Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- public key
- 생성 모델 평가
- Spectral GNN
- python3
- deepseek
- 이상 탐지
- PSNR
- session 미종료
- ChatGPT
- posterior collapse
- GNN
- Google Cloud
- mode collapse
- GCP
- PyTorch
- kl divergence
- 생성 모델
- DeepLearing.AI
- prompt engineering
- zachary’s karate club
- Inductive Learning
- cross-entropy
- 사회 네트워크 분석
- Vertex AI
- Transductive Learning
- Grad-CAM
- 대칭키
- SSIM
- ARIMA
- Spatial GNN
Archives
- Today
- Total
데이터 과학 노트
[deeplearning.ai] How Diffusion Models Work 본문
Computer Vision/생성 모델
[deeplearning.ai] How Diffusion Models Work
Data Scientist Note 2023. 6. 19. 12:35(deeplearning.ai) How Diffusion Models Work
강좌 정보
- Instructors: Sharon Zhou, Andrew Ng (Stanford)
- 강좌 링크
- (왼쪽) 주피터 노트북 / (오른쪽) 강좌
Introduction
Intuition
- Goal
- sprite images → even more sprites
- NN to learn what a sprite is:
- add different noise levels to the training data of sprites
Sampling
Principle 1: 명확하고 구체적인 명력어 사용 (Write clear and specific instructions)
- clear / short
- Tactic 1: 구분 기호 사용: 따옴표, 백틱, 대시, 꺽쇠 괄호, XML 태그 (Use delimiters: triple quotes, triple backticks, triple dashes, angle brackets, XML tags)
- avoiding prompt injections
- * seperate sections
- Tactic 2: 구조화된 출력 요청 (Ask for structured output)
- Tactic 3: 조건 만족 여부 확인, 작업 수행에 필요한 가정 확인 (Check whether conditions are satisfied, Check assumptions required to do the task)
- Tactic 4: 작업을 성공적으로 완료한 사례를 제시 ("Few-shot" prompting; Give successful examples of completing tasks. Then ask model to perform the task)
# tactic 1
prompt = f"""
Summarize the text delimited by triple backticks \
into a single sentence.
```{text}```
"""
response = get_completion(prompt)
print(response)
# tactic 2
prompt = f"""
Generate a list of three made-up book titles along \
with their authors and genres.
Provide them in JSON format with the following keys:
book_id, title, author, genre.
"""
response = get_completion(prompt)
print(response)
# tactic 3
prompt = f"""
You will be provided with text delimited by triple quotes.
If it contains a sequence of instructions, \
re-write those instructions in the following format:
Step 1 - ...
Step 2 - …
…
Step N - …
If the text does not contain a sequence of instructions, \
then simply write \"No steps provided.\"
\"\"\"{text_1}\"\"\"
"""
response = get_completion(prompt)
print("Completion for Text 1:")
print(response)
# tactic 4
prompt = f"""
Your task is to answer in a consistent style.
<child>: Teach me about patience.
<grandparent>: The river that carves the deepest \
valley flows from a modest spring; the \
grandest symphony originates from a single note; \
the most intricate tapestry begins with a solitary thread.
<child>: Teach me about resilience.
"""
response = get_completion(prompt)
print(response)
Principle 2: 모델에게 생각할 시간 주기 (Give the model time to think)
- Tactic 1: 작업을 완료하는 데 필요한 단계 지정 (Specify the steps required to complete a task)
- Tactic 2: 성급하게 결론을 내리기 전에 모델이 자체 솔루션을 해결하도록 지시 (Instruct the model to work out its own solution before rushing to a conclusion)
# tactic 1
prompt_1 = f"""
Perform the following actions:
1 - Summarize the following text delimited by triple \
backticks with 1 sentence.
2 - Translate the summary into French.
3 - List each name in the French summary.
4 - Output a json object that contains the following \
keys: french_summary, num_names.
Separate your answers with line breaks.
Text:
```{text}```
"""
response = get_completion(prompt_1)
print("Completion for prompt 1:")
print(response)
# tactic 2
- First, work out your own solution to the problem.
- Then compare your solution to the student's solution \
and evaluate if the student's solution is correct or not.
Don't decide if the student's solution is correct until
you have done the problem yourself.
그 외 강좌
- ChatGPT Prompt Engineering for Developers
- LangChain for LLM Application Development
- How Diffusion Models Work
- Building Systems with the ChatGPT API
References
'Computer Vision > 생성 모델' 카테고리의 다른 글
생성 모델 평가 지표 PSNR, SSIM (0) | 2024.04.09 |
---|